best answer > What is the Q value in statistics?- QuesHub | Better Than Quora
The most authoritative answer in 2024
  • Oliver Brown——Works at SpaceX, Lives in Cape Canaveral.

    As a statistical expert with a deep understanding of various statistical concepts, I'm glad to provide an explanation of the Q value in statistics. The Q value is a concept that is often used in the context of multiple hypothesis testing, which is a common scenario in fields like genomics, where a large number of statistical tests are performed simultaneously.

    ### Introduction to Multiple Hypothesis Testing

    When conducting multiple hypothesis tests, the chance of obtaining at least one false positive (a Type I error) increases with the number of tests performed. This is known as the multiple comparisons problem. To control the rate of Type I errors across all tests, statisticians use different methods to adjust the significance levels of individual tests.

    ### The P-value

    The p-value is a fundamental concept in statistics. It represents the probability of observing a result as extreme as, or more extreme than, the one calculated under the null hypothesis. A low p-value suggests that the observed data is unlikely to have occurred by chance alone, and thus, the null hypothesis may be rejected in favor of the alternative hypothesis.

    ### The Q-value

    Now, let's delve into the Q value. The Q value is a statistical measure that extends the concept of the p-value by adjusting it to account for the False Discovery Rate (FDR). The FDR is a statistical method that is used to control the expected proportion of false positives among the rejected hypotheses when performing multiple comparisons.

    The Q value is calculated by considering the distribution of p-values under the null hypothesis and adjusting for the number of tests conducted. It is a more stringent measure than the p-value because it takes into account the increased likelihood of false positives when many tests are performed.

    ### Adjusting for False Discovery Rate

    The adjustment for FDR is particularly important in fields where a large number of hypotheses are tested, as it helps to reduce the number of false discoveries. The Benjamini-Hochberg procedure is a widely used method for controlling the FDR, and it is in this context that the Q value is often discussed.

    ### Calculation of Q-value

    The Q value is calculated using a specific formula that depends on the chosen FDR level, the number of tests, and the observed p-values. The formula is designed to ensure that the expected proportion of false positives is controlled at the specified FDR level.

    ### Interpretation of Q-value

    A low Q value indicates that it is unlikely that the observed result is due to chance alone, and it is less likely to be a false positive. Researchers often use a threshold for the Q value to decide which results are statistically significant after FDR adjustment.

    ### Conclusion

    In summary, the Q value is a critical tool in statistical analysis when dealing with multiple hypothesis testing. It provides a more accurate measure of significance by accounting for the increased risk of false positives inherent in performing many tests. Understanding and correctly applying the concept of Q value is essential for researchers to draw valid conclusions from their data.

    read more >>
    +149932024-04-22 07:42:00
  • Charlotte Wilson——Studied at the University of Johannesburg, Lives in Johannesburg, South Africa.

    A p-value is an area in the tail of a distribution that tells you to odds of a result happening by chance. A Q-value is a p-value that has been adjusted for the False Discovery Rate(FDR). The False Discovery Rate is the proportion of false positives you can expect to get from a test.Jun 10, 2015read more >>
    +119962023-06-22 06:39:48

About “告诉你、您可以、假发”,people ask:

READ MORE:

QuesHub is a place where questions meet answers, it is more authentic than Quora, but you still need to discern the answers provided by the respondents.

分享到

取消