Hello! As an expert in mathematics, I can certainly help you understand how to find the vertex of a quadratic equation. A quadratic equation is typically written in the form \( ax^2 + bx + c = 0 \), where \( a \), \( b \), and \( c \) are constants, and \( x \) is the variable.
The
vertex form of a quadratic equation is given by \( y = a(x - h)^2 + k \), where \( (h, k) \) is the vertex of the parabola. To find the vertex, you can use the following steps:
1. Identify the coefficients \( a \), \( b \), and \( c \) from the quadratic equation.
2. Calculate the
x-coordinate of the vertex using the formula \( h = -\frac{b}{2a} \).
3. Substitute \( h \) back into the original equation to find the
y-coordinate \( k \).
4. The vertex \( (h, k) \) is then the point where the parabola changes direction.
Now, let's translate this into Chinese:
大家好!作为数学领域的专家,我可以帮助你理解如何找到二次方程的顶点。二次方程通常以形式 \( ax^2 + bx + c = 0 \) 写成,其中 \( a \),\( b \) 和 \( c \) 是常数,\( x \) 是变量。
二次方程的
顶点形式由 \( y = a(x - h)^2 + k \) 给出,其中 \( (h, k) \) 是抛物线的顶点。要找到顶点,你可以使用以下步骤:
1. 从二次方程中识别出系数 \( a \),\( b \) 和 \( c \)。
2. 使用公式 \( h = -\frac{b}{2a} \) 计算顶点的
x坐标。
3. 将 \( h \) 代入原方程以找到
y坐标 \( k \)。
4. 然后顶点 \( (h, k) \) 就是抛物线改变方向的点。
read more >>